Step of Proof: quotient_qinc
12,41
postcript
pdf
Inference at
*
I
of proof for Lemma
quotient
qinc
:
T
:Type,
E
:(
T
T
). EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
T
(
x
,
y
:
T
//
E
(
x
,
y
))
latex
by ((((Unfold `subtype` 0)
CollapseTHEN (UnivCD))
)
CollapseTHENA ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
T
: Type
C1:
2.
E
:
T
T
C1:
3. EquivRel(
T
;
x
,
y
.
E
(
x
,
y
))
C1:
4.
x
:
T
C1:
x
(
x
,
y
:
T
//
E
(
x
,
y
))
C
.
Definitions
x
,
y
.
t
(
x
;
y
)
,
t
T
,
S
T
,
x
(
s1
,
s2
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
equiv
rel
wf
origin